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Abstract 

Without proper prevention and treatment more than 78 million people will be suffering from a type of dementia by 
2030. Public health and clinical research initiatives need better means for early identification of patients at risk of 
dementia, and personalized clinical evaluation steps to diagnose potentially reversible causes. In this study, we 
leverage real-world electronic health records and an automated machine learning based framework to predict mild 
cognitive impairment (MCI) as an important risk factor for dementia. Further, our framework includes a 
recommender system suggesting diagnostic procedures for patients at the risk of MCI as compared to clinical practice. 
Our experimental results with logistic regression, random forest, XGBoost and long short-term memory models 
trained and tested on more than 4.2K MCI patients and more than 82K cognitively unimpaired patients show that 
xgboost model can predict MCI one year before onset of the disease with ROC-AUC of 0.68±0.07 and recommend 
necessary procedures for MCI patients effectively with average ROC-AUC of 0.78±0.01. 

 

Introduction 

Dementia is one of the major causes of mortality and morbidity in older people worldwide and it is estimated that 78 
million people will be suffering from some form of dementia by the end of this decade (1), placing a tremendous 
burden on patients, their families, and health care systems. An important risk factor for dementia is mild cognitive 
impairment (MCI). Identifying early symptoms of MCI and recommending appropriate diagnostic procedures for 
patients at the risk of developing MCI is a crucial task to help the aging population with their health needs. Even if 
there are limited clinical interventions known to effectively alter the course of MCI and dementia, identifying patients 
at risk would allow for targeted recruitment of such populations into clinical trials to study developing interventions. 
Learning and disseminating personalized diagnostic evaluation steps is a further essential process to optimize timely 
diagnosis of MCI cases, including exclusion vs. diagnosis of potentially reversible causes (e.g., endocrine, nutritional, 
and infectious).  

MCI is mainly characterized by minor memory impairment (2) and is formally diagnosed by evaluating individual’s 
cognitive capabilities and clinical examination by a healthcare professional (3). Patients do not routinely screened for 
possible MCI and as a result are often either under-diagnosed or diagnosis is delayed until late in the illness trajectory. 
One solution to the lack of formal screening for MCI disease is to identify patients otherwise engaged in the health 
care system by creating automated tools to analyze patients’ medical history and detect those at the MCI risk. 

Electronic health records are growing source of information that can be harnessed to identify patients at risk of MCI. 
Early and accurate diagnosis of such diseases can be addressed using machine learning based tools and analyzing 
patients electronic health records (EHR) (4,5). To this end, there have been multiple attempts to predict patients with 
cognitive impairment mostly using standard machine learning models such as support vector machines (SVMs), 
logistic regression and random forest (6–9) and public databases such as North American Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) (10) as well as the European’s AddNeuroMed Study (11). SVM models have been 
effectively used to predict MCI using gait analysis of patients (12). Other types of healthcare data such as image-based 
memory test results along with patients’ demographics and medical records have been used to produce MCI prediction 
tools using naïve bayes models (13). More sophisticated deep learning models such as graph convolutional neural 
networks and recurrent neural networks have also been used to predict MCI onset from patients EHR data as well as 
imaging and clinical notes data (3,14,15).  



However, previous works have been mainly centered on MCI prediction only without providing necessary procedure 
recommendations for those patients at MCI risk. Further, using machine learning models in MCI prediction has 
remained largely unexplored mostly due to the lack of real-world data on MCI diagnosis. In this study, we use Stanford 
EHR data and seek to implement machine learning models for improving dementia diagnosis through the following 
objectives: 

• To determine if machine learning models trained on patients’ electronic health records can effectively 
predict mild cognitive impairment.  

• To determine if machine learning models can recommend necessary diagnostic procedures for patients at 
the risk of developing mild cognitive impairment. 

Materials and Methods 

The proposed framework in this study includes two main components: 1) MCI onset prediction using machine 
learning, 2) necessary diagnostic procedure recommendation for patients at the risk of MCI. Figure 1 shows the 
schema of cohort extraction and model training. Components of this framework are described in detail in the 
following sub-sections.  
 

 
Figure 1. General architecture of our proposed framework for MCI prediction and MCI necessary procedures 
recommendation. (a) MCI patients were identified, and case and control cohorts were created. (b) Diagnosis, 
procedure, medication and demographic features were used to create training and testing data for both MCI 
prediction and procedure recommender system. (c) Timeline for the MCI prediction component: prediction window 
for MCI prediction is 1 year. Index date for MCI patients is first MCI diagnosis date and for controls is 1 year prior 
to their last record in the data. (d) Timeline for the diagnostic procedure recommender: prediction window is 2 
months.  
 
Data and Cohorts 

Our data consist of deidentified EHR records for patients in Stanford Healthcare from 2000 to 2020. Cases include 50 
years or older patients with at least one ICD diagnosis of MCI (ICD10s=G31.84, F09 and ICD9s=331.83, 294.9) and 
at least two years of data availability. Controls are 50 years or older patients with no ICD diagnosis in their records 
and at least two years of data availability. Data availability is the duration time between patients first record date to 
the index date where the index date for cases is the first MCI diagnosis date and for the controls is one year before 
their last record in the data. Controls are matched with cases based on age and gender to create a balanced train set 
including 5,693 patients (2,840 cases and 2,853 controls) and a test set including 81,078 patients (1,227 cases and 
79,851 controls).  Our MCI prediction models are trained using balanced training dataset one year prior to the index 
date for cases and controls; however, our testing experiments include imbalanced scenarios, and the MCI prediction 
models are tested on the unseen (held out) imbalanced test set. Note, our diagnostic procedure recommender models 
are trained and tested using Cases only as the recommender system is aimed to provide recommendations for necessary 



procedures for patients at MCI risk. Training and testing data for the recommender system include 3,658 and 1,551 
patients, respectively.  

 

Data Pre-processing 

Dataset includes n patients 𝑃 = {𝑝!, … , 𝑝"}. For a patient 𝑝# their diagnosis, medication, procedure and demographic 
records are in a (𝑡$# , 𝐶#)  format, where 𝑡$#  is the 𝑗%&  timestamp for 𝑝#  and 𝐶#  indicate medications, diagnosis or 
procedures codes for this patient at 𝑡$#. This longitudinal data format was used to train our long-short term memory 
model. We converted this longitudinal format to a stationary format for training standard machine learning models 
including logistic regression, random forest and xgboost. For each patient 𝑝# we computed the frequencies of the 
features across all patient’s timestamps {𝑡$!, … , 𝑡$# 	, … , 𝑡$'} . We created a stationary dataset 𝑆 =
{(𝑋!, 	𝑌(), … , (𝑋# , 	𝑌#), … , (𝑋", 𝑌")}, where 𝑋# is a 1D vector indicating frequencies of all medication, diagnosis and 
procedure features concatenated with patient’s demographic features, age, gender and race, and 𝑌#  is the target 
variable. For the MCI prediction task 𝑌# is a binary variable indicating if 𝑝# will develop MCI in a year or not, and for 
the MCI diagnostic procedure recommendation system 𝑌# is a multi-hot vector indicating the recommended procedure 
for 𝑝#. The prediction window for MCI prediction task is one year and for the procedure recommendation task is two 
months. Table 1 and Table 2 respectively describe statistics of the demographic features and prevalence of the top-5 
diagnoses, procedures and medications selected by random forest model. Demographic features in terms of age and 
gender were similar among cases and controls as we matched based on these variables. The average age of cases and 
controls were 74.36 years (25th and 75th percentiles = 68, 83) and 76.33 years (25th and 75th percentiles = 70, 84), 
respectively. The majority were female (54.41% among both cases and controls).  

 

Table 1. Patient demographics among Cases and Controls.  
Variable Case Control 
Age a74.36 (68, 83) 76.33 (70, 84) 
Female 2,213 (54.41%) 2,213 (54.41%) 
Race 
     Asian b458 (11.26%) 595 (14.63%) 
     Black 225 (5.53%) 150 (3.69%) 
     Native American 14 (0.34%) 13 (0.32%) 
     Pacific Islander 32 (0.79%) 32 (0.78%) 
     White 2,785 (68.48%) 2,446 (60.14%) 
     Unknown 120 (2.95%) 337 (8.29%) 
     Other 433 (10.64%) 494 (12.15%) 

a Numbers are in V(x, y) format, where V is the average and x and y are 25th and 75th percentile, respectively. 
  b Numbers are in N(p%) format, where N is the number of patient and p% shows the percentage in the cohort. 

 
 
Predictors 
Predictors in this study include medications, diagnosis, procedure and demographic features. Note, we grouped 
medications and diagnoses using pharmaceutical class and clinical classification software (CCS) (16) codes, 
respectively. We considered the top-100 most frequent medications, diagnoses and procedures codes as well as the 
demographic features, age, sex and race. The feature set 𝑋# for patient 𝑝#, includes 300 medication, diagnosis and 
procedure codes plus 3 demographic features. These 303 features were used in our multi label procedure recommender 
system.  We reduced this feature space size further to 30 features using random forests to train machine learning 
algorithms for our binary MCI prediction system. Random forest and a 5-fold cross validation were used on the 
training dataset to find top-30 features for the MCI prediction task.  

Targets 
Target variable for the MCI prediction task is a binary variable indicating if a patient 𝑝# will have an MCI diagnosis 
code (ICD10s=G31.84, F09 and ICD9s=331.83, 294.9) recorded one year from the time of prediction. Our second 



task includes predicting necessary procedures for patients who are diagnosed MCI. The top-100 most frequent 
procedures among MCI patients were reviewed by our clinical authors to exclude those that reflect low information 
routine processes (e.g., nursing orders to check vital signs or routine glucose by meter checks) leaving a final target 
variable set including 46 procedures presented in Table 3. Note, the models were trained using patients’ diagnosis, 
procedure, medication and demographic records up to two months (prediction window in our first task is 12 and in 
our second task is 2 months) prior to the MCI onset time 𝑡#  for each patient 𝑝# . The trained models then predict 
necessary diagnostic procedures in the form of a multi-hot vector with 46 elements each representing one of the 
procedures in Table 3. 

 
Table 2. Patient demographics among Cases and Controls.  

Variable Case Control 
Diagnosis Class 
Exposure, encounters, screening or contact with 
infectious disease 

1,537 (37.79%) 565 (13.89%) 

Nervous system signs and symptoms  1,332 (32.75%) 379 (9.32%) 

Medical examination/evaluation 2,024 (49.77%) 902 (22.18%) 

Musculoskeletal pain, not low back pain 1,762 (43.32%) 757 (18.61%) 

Disorder of lipid metabolism 2,206 (54.24%) 1,551 (38.14%) 

Procedure 
Metabolic panel, comprehensive  2,491 (61.25%) 1,156 (28.42%) 

TSH  1,948 (47.90%) 720 (17.70%) 

CBC with differential  2,498 (61.42%) 1,279 (31.45%) 

Metabolic panel, basic 2,144 (52.72%) 1,055 (25.94%) 

Specimen remark 
 

1,544 (37.96%) 674 (16.57%) 

Medication Class 
Antihyperlipidemic-hmgcoa reductase inhib(statins) 1,881 (46.25%) 1,060 (26.06%) 
Selective serotonin reuptake inhibitor (SSRIs) 
 

793 (19.50%) 246 (6.05%) 

Opioid analgesic and non-salicylate analgesics 1,652 (40.62%) 795 (19.55%) 

Anticonvulsants 994 (24.44%) 390 (9.59%) 

Platelet aggregation inhibitors 
 

1,626 (39.98%) 976 (24.00%) 

Numbers are in N (p%) format, where N is the number of patient and p% shows the percentage in the cohort. Non-
informative procedures such as external lab results are not shown in this table.  

 
 
 
 
 
 
 



Table 3. List of the diagnosis procedures predicted by the recommender system. 
Hemoglobin A1c Urinalysis, screen for culture 
Hepatic function panel Vitamin b12 
Creatinine point of care CT head 
Lipid panel, non-fasting patient XR chest 1v 
Lipid panel, fasting patient XR chest 2v 
Magnesium, serum/plasma MRI brain wo contrast 

Metabolic panel, basic 
Blood culture (aerobic & anaerobic 
bottle) 

Metabolic panel, comprehensive C- reactive protein 
Occupational Therapy evaluate Referral to neurology 
Phosphorus, serum/plasma Eval/mgmt of new patient level 5 
Prothrombin time Eval/mgmt of est patient level 4 
Physical Therapy evaluate Eval/mgmt of est patient level 5 
PTT partial thromboplastin time Autonomic testing- cardiovascular 
OT ongoing treatment PT ongoing treatment 
Foley retention catheter Vitamin d, 25-hydroxyvitamin 
Sedimentation rate (esr) TSH w/ reflex ft4 
Referral to physical therapy Miscellaneous processing 
Interagency referral to home 
health/addendum to certification CBC w/o diff 
T4, free XR chest 2 views 
Referral to neuropsychology Creatinine, serum/plasma 
Troponin i ECG 12-lead 
TSH Echo - transthoracic echo 
Urinalysis, complete Ferritin 

 
 
Models 
The predictors were used to train logistic regression, random forest, xgboost and long short-term memory (LSTM) 
models. Logistic regression uses a logistic function to model the outcome probabilities of a single trial experiment(17). 
Random forest (18) is an ensemble model that operates by constructing a multitude of decision trees at training time 
and has been used extensively to solve prediction tasks in healthcare data analysis. The goal is to create a predictive 
model to predict 𝑌#  given the training data set 𝑆 = {(𝑋!, 	𝑌(), … , (𝑋# , 	𝑌#), … , (𝑋", 𝑌")}  of independent random 
variables distributed as the independent prototype pair (𝑋# , 	𝑌#)(15). For each tree 𝑇$ in a forest including 𝑀 trees, 
the predicted value for the input sample 𝑋# is denoted by 𝑚"(𝑥; 𝜃$ 	, 𝐷"), where 𝜃!, … , 𝜃) are independent random 
variables, distributed the same as a generic random variable 𝜃. Similar to random forest, xgboost (19) is an ensample 
model based on decision trees. XGBoost trains tree ensemble models in an additive manner to greedily and efficiently 
regularize the ensemble tree objective function.  LSTM (20) is a recurrent neural network model where connections 
between nodes form a directed graph along a temporal sequence and has already been deployed successfully in 
analyzing temporal data in many biomedical applications(3,21–23). Note, we used LSTM for our second task only, 
diagnostic procedure recommendation, as LSTM models have shown high capacities in analyzing longitudinal data 
with multi-label outputs. We used a dynamic LSTM with a fully connected layer and sigmoid activation function on 
top of the last output of the model to predict necessary procedures for MCI patients (Figure 2).  



 
Figure 2. Architecture of the LSTM model for diagnostic procedure recommendation task.  

Logistic regression, random forest and xgboost models were trained using the train set including 5,693 (2,840 cases 
and 2,853 controls) patients’ data and a randomized parameter search with a 5-fold cross validation for MCI prediction 
task. The trained models were tested using a randomly selected held out test set including 81,078 (1,227 cases and 
79,851 controls) patients’ data. The optimum logistic regression has a sag as it’s solver with 𝐶 = 100. The optimum 
random forest model has 1600 estimators with maximum depth of 110. The optimum values for the number of 
estimators, maximum depth, learning rate and gamma for the xgboost model used are 1600, 16, 0.1, and 10. The 
optimized models were assessed using accuracy, precision, recall, F1-score and ROC-AUC. Accuracy is the ratio of 
correct MCI and CU predictions by the models to the total number of samples in the test set. Precision (positive 
predictive value) indicators how often the model is correct when predicting a sample as MCI, and recall (sensitivity) 
measures the performance of the model in retrieving all MCI samples in the test data. F1 is the harmonic mean of 
precision and recall and ROCAUC shows the model's performance across different decision thresholds. For the 
procedure recommender task, we used MCI patients’ data up to two months prior to their first MCI diagnosis to train 
and test logistic regression, random forest, xgboost and LSTM models. Similar to the MCI prediction models, the 
random forest and the xgboost model were optimized using a randomized parameter search with a 5-fold cross 
validation. However, the LSTM models were trained once using pre-defined default hyper-parameters due to high 
complexity of fine tuning LSTM models. Note, in this task the models are trained to produce a multi label output 
indicating necessary procedures (see Table 3) for each patient.  

 
Experimental Results 

Table 4 shows the MCI prediction results at one year before the disease onset using logistic regression, random forest 
and xgboost models. The xgboost model has a slightly higher ROC-AUC (=0.683±0.073) than random forest and 
logistic regression on the test set. The recall for this model is 0.733, showing that xgboost could correctly detect and 
predict the majority of MCI patients in the test set at one year before the disease onset. However, precision scores for 
the xgboost and the other two models are significantly low. This is expected and because of the high control/case ratio 
in our test set (control/case ratio in the test set is over 65). Precision on a balanced unseen test set including 1,227 
cases and 1214 controls for logistic regression, random forest and xgboost were 0.722, 0.762 and 0.780 respectively. 
Both xgboost and random forest models have ROC-AUC in a range comparable to standard clinical risk stratification 
and screening models, allowing them to flexible and adjustable based on clinic care settings. They also perform well 
in detecting majority of patients at the risk of MCI one year before the disease onset.  

 
Table 4. Performance of MCI prediction using machine learning on unseen test sets.  

Model Precision Recall F1-score AUC 

Logistic Regression 0.023±0.005 0.637±0.130 0.045±0.009 0.676±0.075 

Random Forest 0.021±0.003 0.744±0.121 0.040±0.007 0.680±0.078 

XGBoost 0.022±0.004 0.733±0.123 0.043±0.007 0.683±0.073 
 



Our second objective in this study is to develop a machine learning model to recommend necessary procedures for 
patients at the risk of MCI. To this end, we used the MCI cohort (cases) and trained logistic regression, random forest 
and xgboost models to predict necessary procedures among a list of 46 common diagnostic procedures presented in 
Table 3. Precision, recall, f1-score and ROC-AUC for these experiments are presented in Table 5. Note, we used 
random forest, xgboost as well as LSTM models here. XGBoost and random forest both have shown better 
performance than logistic regression in our first task, MCI prediction and LSTM have showed promising performance 
in longitudinal data analysis and multi label tasks in healthcare (3,21,23). Further, we used two baseline models: 
random recommender model and top-10 recommender. Random recommender simply produces random suggestions 
and top-10 recommender always recommend for the top-10 most frequent diagnostic procedures. We used one-versus-
rest micro averaged precision, recall, F1-score and ROC-AUC as the target is a multi-hot vector predicting 46 different 
diagnostic procedures. Micro averaged assessments were computed by counting the total true positives, false negatives 
and false positives. XGBoost model had the highest ROC-AUC (0.782±0.017). However, random forest is the most 
precise model when flagging a patient as high MCI risk (precision=0.594±0.0.091). All machine learning models have 
higher ROC-AUC than the baseline models, showing the substantial information gain from using personalized 
prediction models.  

 
Table 5. Machine learning prediction performance in diagnostic procedure recommendation for MCI patients. 

Model Micro averaged 
precision 

Micro 
averaged recall 

Micro averaged 
f1-score 

Micro averaged 
AUC 

Random recommender 0.118±0.016 0.500±0.011 0.191±0.021 0.504±0.010 
Top-10 recommender 0.222±0.029 0.409±0.015 0.287±0.026 0.610±0.010 

RNN 0.349±0.053 0.204±0.030 0.257±0.037 0.693±0.030 
Random forest 0.594±0.0.091 0.062±0.017 0.111±0.029 0.771±0.018 

XGBoost 0.565±0.057 0.096±0.017 0.164±0.027 0.782±0.017 
 

 

Discussion 

In this work we analyzed Stanford healthcare EHR data from more than 4.2K MCI and 82K cognitively unimpaired 
patients over 20 years and created machine learning based models to predict MCI onset as well as creating diagnostic 
procedure recommendation systems. XGBoost model could predict MCI reasonably effectively (ROC-
AUC=0.683±0.073) and produce an effective diagnostic procedure recommendation system for patients at the risk of 
MCI (ROC-AUC=0.782±0.017). These machine learning models trained using thousands of patients’ records could 
automatically screen patients EHR data and detect those at the risk and suggest initial diagnostic workup steps for 
those identified. While there are already clinical tools developed to diagnose MCI such as the Montreal cognitive 
assessment (MoCA) tool (24), these tools are not intended to be predictive of future diagnosis, and have typically been 
produced using small and underrepresented sample size (e.g. only 94 MCI patients data have been used to create 
MoCA). Further, these tools need to be administered by healthcare professionals with the patient in front of them (or 
online), which limits their applicability and feasibility. Our automated machine learning based tools may be more 
feasible to use in large population screening for MCI risk and recommending diagnostic procedures in clinical care 
than traditional tools.  

Limitations in the study include that, although we thoroughly tested the models using randomly selected held-out test 
sets, more prospective study is needed to test our models’ performances in a clinical care environment. Testing both 
the MCI prediction and diagnostic procedure recommender system in real-time and in a real-world environment can 
re-assure the generalizability of our models. Further, in this study patients EHR data including their past diagnosis, 
medication and procedure records were used in a structured format. However, other resources such as patients brain 
MRI images as well as patients’ clinical notes may provide more insights and provide increased power in predicting 
MCI.  

 



Conclusion 

Mild cognitive impairment can be predicted up to 1 year in advance using a combination of structured real-world 
electronic health record data and machine learning algorithms, and further supported with algorithmically learned 
diagnostic procedure recommendations for those patients identified. 
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